# Basic Algebraic Properties of Real Numbers

10 October 2016

Algebraic Properties of Real Numbers The numbers used to measure real-world quantities such as length, area, volume, speed, electrical charges, probability of rain, room temperature, gross national products, growth rates, and so forth, are called real numbers. They include such number.The basic algebraic properties of the real numbers can be expressed in terms of the two fundamental operations of addition and multiplication. Basic Algebraic Properties: Let and denotes real numbers. (1) The Commutative Properties (a) (b)

We will write a custom essay sample on
Basic Algebraic Properties of Real Numbers
or any similar topic specifically for you
Do Not Waste

Only \$13.90 / page

The commutative properties says that the order in which we either add or multiplication real number doesnâ€™t matter. (2) The Associative Properties (a) (b) The associative properties tells us that the way real numbers are grouped when they are either added or multiplied doesnâ€™t matter. Because of the associative properties, expressions such as and makes sense without parentheses. (3) The Distributive Properties (a) (b) The distributive properties can be used to expand a product into a sum, such as or the other way around, to rewrite a sum as product: (4) The Identity Properties (a) (b)

We call the additive identity and the multiplicative identity for the real numbers. (5) The Inverse Properties (a) For each real number , there is real number , called the additive inverse of , such that (b) For each real number , there is a real number , called the multiplicative inverse of , such that Although the additive inverse of , namely , is usually called the negative of , you must be careful because isnâ€™t necessarily a negative number. For instance, if , then . Notice that the multiplicative inverse is assumed to exist if . The real number is also called the reciprocal of and is often written as .

Example: State one basic algebraic property of the real numbers to justify each statement: (a) (b) (c) (d) (e) (f) (g) If , then Solution: (a) Commutative Property for addition (b) Associative Property for addition (c) Commutative Property for multiplication (d) Distributive Property (e) Additive Inverse Property (f) Multiplicative Identity Property (g) Multiplicative Inverse Property Many of the important properties of the real numbers can be derived as results of the basic properties, although we shall not do so here. Among the more important derived properties are the following. (6) The Cancellation Properties: a) If then, (b) If and , then (7) The Zero-Factor Properties: (a) (b) If , then or (or both) (8) Properties of Negation: (a) (b) (c) (d) Subtraction and Division: Let and be real numbers, (a) The difference is defined by (b) The quotient or ratio or is defined only if . If , then by definition It may be noted that Division by zero is not allowed. When is written in the form , it is called a fraction with numerator and denominator . Although the denominator canâ€™t be zero, thereâ€™s nothing wrong with having a zero in the numerator. In fact, if , (9) The Negative of a Fraction: If , then